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Abstract

A new hybrid method is presented for the analysis of the scat-

tering and radiation by conformal antennas and arrays comprised of

circular or rectangular elements. In addition, calculations for cavity-

backed spiral antennas are given. The method employs a finite ele-

ment formulation within the cavity and the boundary integral (ex-

act boundary condition) for terminating the mesh. By virtue of the

finite element discretization, the method has no restrictions on the

geometry and composition of the cavity or its termination. Further-

more, because of the convolutional nature of the boundary integral

and the inherent sparseness of the finite element matrix, the storage

requirement is kept very low at O(n). These unique features of the

method have already been exploited in other scattering applications

and have permitted the analysis of large-size structures with remark-

able efficiency. In this report, we describe the method's formulation

and implementation for circular and rectangular patch antennas in

different superstrate and substrate configurations which may also in-

clude the presence of lumped loads and resistive sheets/cards. Also,

various modelling approaches are investigated and implemented for

characterizing a variety of feed structures to permit the computation

of the input impedance and radiation pattern. Many computational

examples for rectangular and circular patch configurations are presen-

ted which demonstrate the method's versatility, modeling capability

and accuracy.
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1 Introduction

In designing low observable Vehicles, the radar cross section (RC$) of con-

formal microstrip patch or cavity antennas and arrays is of crucial import-

ance. An example of such an antenna configuration is illustrated in Figure 1

and in computing its RCS, it is necessary to consider the contributions of

the radiating elements as well as those of the feed and cavity substructures.

Conventional analyses based on the space domain and spectral domain in-

tegral equations [1]-[7] make use of the infinite substrate Green's function

and are thus best suited for computing the RCS near resonance. In that

case, the antenna size iS relatively small and structural terminations are not

as important. Outside resonance and particularly at higher frequencies, the

moment method solutions lead to large systems which are not practical for

including contributions due to the feed and substructure of the conformal

antenna or array.

In this report, we review a hybrid finite element method for computing

the scattering of conformal antenna structures while taking into account the

presence of the feed geometry and the cavity substructure. This method was

originally presented by Jin and Volakis [8]-[11] and has recently been gener-

alized to allow modeling of non-rectangular patches [12] and more intricate

feed structures and distributed loads such as resistive sheets [13], often used

for RCS reduction purposes. An important feature of the method is the use

of the finite element method to discretize the cavity region occupied by the

substrate, feed structures and radiating elements. This results in a sparse

matrix for the solution of the cavity fields and is the primary advantage of

the method because it leads to O(N) matrix system, where N denotes the

number of edges used in constructing the volume mesh. At the aperture of

the cavity, the exact boundary integral equation is enforced to terminate the

mesh (i.e. not an absorbing boundary condition) and thus, in principle, the

proposed hybrid finite element method is exact. To retain an O(N) storage

requirement for the overall system, it is necessary to have a structured grid at

the aperture allowing use of the FFT in Conjunction with an iterative solver

[14], [15], [16].

In the following, we first present the mathematical formulation of the

method, allowing for the presence of lumped loads, resistive sheets and feed-

ing cables or microstip lines. The resulting functional is discretized by in-

troducing tetrahedral or rectangular elements. In particular, edge-based ele-
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ments are employedwhich havea number of inherent advantagesover tra-
ditional node-basedelements. Specifically, the edge-basedelementsare di-
vergencelesswithin eachelement,thus, eliminating spurioussolutions; they
maintain tangential field continuity at dielectric interfaceswithout a need
to introduce additional constraints; and are suitable for modeling corners,
wherecertain field componentsare singular.

Using codesbasedon the presentedfinite elementboundary integral for-
mulation, wecomputethe RCSof different configurationswhich demonstrate
the accuracy of the method as well as its adaptability in modeling a large
classof configurations.

2 Formulation

Consider the cavity configuration illustrated in Figure 1. The cavity is re-

cessed in a ground plane as is usually the case with conformal antennas on

aircraft platforms. The actual antenna or array elements are placed either

on the aperture or within the cavity, in which case they radiate in a sub-

strate/superstrate configuration. It is assumed that the elements are fed in

various ways, including via a stripline or a microstrip line, coaxial cable or

alternatively, they may be aperture coupled to the feeding lines. Further-

more, this formulation allows for the cavity material and geometry to be

arbitrary, and the same is true for the shape of the patches. The patches

may be further loaded with resistive cards or lumped elements for bandwidth

or frequency control. For the described cavity-backed antenna configuration,

we are interested in computing its radar cross section over a wide range of

fi'equencies.

In accordance with the method introduced by Jin and Volakis Ill], the

problem described above can be formulated by separating the computational

domain into two regions, to be referred to as regions I and II. In region II,

which encompasses the volume occupied by the cavity, the finite element

method will be employed for discretizing the fields. The primary reason for

using the finite element method is its adaptability in modeling a variety of

cavities and radiating elements whose geometries and material composition

may vary widely. The fields in region I (exterior region) will be computed

via the boundary integral method. This amounts to introducing equivalent

sources on the cavity aperture which are then integrated to obtain the radi-



ated fields. The final step of the formulation is to couple the fields in each
region by enforcing tangential field continuity at the aperture. When the
final equationsarediscretized, the resulting systeminvolvesa sparsesection
and a full submatrix. The first is associatedwith the interior fields and,
thus, involves the bulk of the unknowns. The full submatrix is associated
with the field componentson the boundary and by resorting to a structured
grid, this submatrix is Toeplitz which is important for retaining the O(N)

storage requirement of the proposed hybrid finite element method.

2.1 Interior Region Formulation

The goal with any partial differential equation (PDE) solution method, such

as the finite element method, is to solve the vector wave equation

V× (lv × E) -k_oerE=-jkoZoJi + V x (1M i) (1)

where (cr,#_) denote the relative constitutive parameters of the material

filling the cavity, k0 is the free space wavenumber and Z0 is the free space

intrinsic impedance. In addition, 3 i and M i denote the impressed (if any)

electric and equivalent magnetic sources, respectively. These are generally

set to zero for scattering calculations but we shall retain their presence for the

sake of generality. Instead of solving (1) directly, it is more appropriate for

numerical purposes to construct its equivalent weak-form. This can be readily

done via the weighted residual method. Accordingly, (1) is first weighted with

the function T(r) giving the expression

(R,T)

(2)

in which V denotes the volume occupied by the cavity. It is desirable for

numerical calculations to make the first volume integral of the weighted re-

sidual (R,T) symmetric with respect to E and T. To accomplish this we

recall the identity

iii. ( ) iii.'V× _ ×E .mdv = --(V×E)-V×Tdv#,

=



+jkoZoff (3)

in which S encloses the volume V, fi denotes the outward unit normal to S

and H = V xE/(jkoZo)is the magnetic field. When (3)is employed into (2),
we obtain

(R,T) /ffv ( I (V x E) " (V x T) - k_erE " T) dv

+j 0z0// T. [(H'+H +H')×
ap

(4)

where the closed surface in (3) has been replaced by the cavity aperture sur-

face S,p since E x fi vanishes on the interior cavity walls. Consequently, we

have set H = H i + H r + H s, where H i denotes the incident plane wave excit-

ation and H r is the reflected field from the ground plane with the aperture

removed. The remaining field H s is that scattered by the aperture and must

be related to the electric field on S, w either through a local or a global bound-

ary condition. A local boundary condition, such as an absorbing boundary

condition, will only provide an approximate relationship between E and H

on S,p and is not therefore considered in the context of this formulation.

In contrast, a global boundary condition such as the Stratton-Chu integral

equation is an exact relation between E and H on Sap. The treatment of

the surface integral over Sap will be discussed later in more detail. For the

moment we return to the overall numerical solution of (4) for the field E.

To generate from (4) an appropriate linear system, it is necessary to first
discretize the volume V in smaller volume elements. The field in each ele-

ment can then be approximated by introducing some linear or higher order

expansion. Subsequently, by using different testing or weighting functions

T = Wj (j = 1,2,..., N) a linear set of equations can be generated for the

solution of the field expansion coefficients. Some typical volume elements

for discretizing V are illustrated in Figure 2 and any one of these can be

employed for meshing the cavity volume. Obviously, elements such as rect-

angular bricks are best suited for rectangular patches, whereas tetrahedrals

can be used for discretizing cavities which house antenna elements of more

arbitrary shape. An advantage of the rectangular bricks is their geometrical
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simplicity, leadingto a rather simplegeometrypreprocessor.In contrast, the
meshgenerator associatedwith the tetrahedral elementsmust be far more
sophisticated. Nevertheless,regardlessof the element type used, the fields
within eachelement (saythe eth element)canbe expressedas_

Nv

E = _ E_W_ (5)
i=1 :

In this, N_ denotes the number of edges forming the element (twelve for

bricks and four for tetrahedrals) and W_ are the element basis or expansion

functions. For our analysis they have been chosen such that the expansion

coefficients E_ represent the value of the field component along the ith edge

of the eth element when evaluated at the location of the same edge.

Substituting the expansion (5) into (4) and setting T = W_ (Galerkin's

testing) gives
Flv+ Fs = Fz + FF (6)

where

N, N, N_

Fir = _ F_v = _ ___ E_ A,_
e=l e=l i=1

N, N_

F_ = EF_=EIq
e=l e=l

E F:, F,: E Q:
e----I e----I

eES&p eE Sa.p

(7)

(8)

(9)

with

)A 0 = (VxW_) (VxW;)" 2 * W_ dv

1¢;= - fff.w,. {jkoZoZ'- V × (_M') } dv

_s = j_oZojJss;. [H'×,,]_.

O: : -v_0z0//ss;. [i-i',<,_]d,
_p

(lO)

(11)

(12)

(13)

6

=

=

=

=

L-

m



The number of volume elements comprising V has been denoted by N,

whereas the number of surface elements comprising Sap has been denoted

by Ns,. For this application, fi = _ and S_ is the same as W_ when the last

is evaluated on the face of the volume element coinciding with Sap.

If resistive cards, lumped loads or coaxial cables are considered, the left-

hand side of (6) must be supplemented by other terms. Specifically, in the

presence of a resistive card (of resistivity R, occupying the surface Sr =

}2 S_), we must introduce the function

N,, 1 N_r

F_v=jkoZo E XE_ f/s R (fixS_)'(fixS_)dv= E EE_Bi5 (14)
e_Sr i=1 e eESr i=1

in which S_ denotes the surface that belongs to the eth element, has N_r sides

and coincides with St. Correspondingly, S 7 are the W_ basis functions when

evaluated on S_. When a lumped load or conducting post is placed at the

ith edge of the eth element, we must then introduce the function

j koZol 2
- --E_W 7 • W; = E_C,_ (15)F3v ZL

with W_,j evaluated at the location of the load or conducting post. Usually,

C_. = 0 for i _¢ j. In (15) ZL denotes the impedance of the load and/is its

length, equal to the length of the ith edge.

Finally, when the antenna is fed with a coaxial cable, we must add to the

left-hand side of (6) the term (see fig. 3)

[ ,oZ0 e_Jko  ]F4v = jkoYo E Elf__ S_. E_S_ ds
eESc.b i=1 _b 7l'p J

r .c }= __, _E E_Di_ - P_ (16)
eEScab ki=l

As usual, S_a b denotes the surface over the face of the eth element whose

face, having Ns¢ sides, coincides with Scab. The basis functions S_,j are the

same as W[./ when the last is evaluated on S_ b and Io is the strength of

the current excitation on the center cond,_ctor. Also, p is the radial distance

measured from the same center conductor and _ is the associated unit vector

along the radial direction. We note that the expression (16) was derived on

the assumption that the coaxial cable supports the lowest order mode.

7



Using the aforementionedmatrix elements,(6) can be rewritten in dis-
crete form as _ _ .... : = =

Ai_ ] + [Bi5 ] + [Cij ] + [Dij] + Fs
e=l ....

Ne N,e =

= Z + {Q:} {P,q (17)
e=l e=l eEScab

eESap

After the element assembly, the above sum results in a sparse matrix which is

the primary advantage of the method. The sparsity of this matrix is assured

• e is restricted within a singlebecause the domain of the shape functions Wi, j

element. Obviously, a single edge can be shared by more than one element

leading to more equations than unknowns which are reduced to the actual

number of unknowns during the assembly process.

The evaluation of the matrix elements Aiej, Bej, etc. is straightforward

once the basis functions W_ are specified. The edge-based expansion func-

tions for rectangular bricks and tetrahedral elements are given in the Appen-

dices along with the corresponding expressions for the matrix elements.

2.2 Exterior formulation

As discussed earlier, to solve the system resulting from (4) or (6), it is neces-

sary to replace the magnetic field appearing in the surface integral in terms

of the electric field, i.e. the working variable. An exact relation between the

tangential electric and magnetic fields at the aperture is

= - I + k--SVV Go(r,r'). [E(r') x Slds' (18)
lp

where Go(r, r') is the free space Green's function

e-jkolr-r'[

Go(r, r') - ],Tr[r - rq (19)

with r and r _ representing the observation and integration points, respect-

ively. Also, I denotes the unit dyad. Substituting (18) into (4) or (12) and

invoking the divergence theorem twice along with the identity

V. (GoE) = E. VGo + GoV. E (20)

8



it follows that

2k_//S_p (2× S_(r)). {//&p [E(r')× _.] Go(r,r')ds'} ds (21)

+2/f s Vs-(S_(r)×_.){/fs V_-[E(r')x_;] Go(r,r')ds'} ds
_p ap

On the aperture, the expansion (5) becomes

N$

E(r) = _ ET' S_'(r) (22)
i---1

where S_'(r) are the basis W_'(r) given in the Appendices when evaluated on

S_'p which is the surface element bordering the e'th volume element. When

(22) is introduced in (21), we obtain

N_e N_,

us XX e' 'e= E i Gij

e'=l i=1

(23)

with

e

+2//s:p Vs" (S_(r)× _){/J(s_ V_. [S_'(r')x _.] Go(r,r')ds'} ds

We observe that the matrix elements Gi_ _ will be non-zero even when S_(r)

does not overlap with S_'(r). In contrast, the matrix element Ai_ given by

(10) will be zero whenever W_ does not overlap with the expansion func-

tion W_. Consequently, the matrix [G_ _] will be full, whereas the matrix
A _resulting after the assembly of [ ij] will be very sparse and, thus, mostly

populated by zeros.

To proceed with the numerical evaluation of the elements _'_Gij , it is neces-

sary to introduce the explicit expressions for the basis functions S_(r). For

rectangular bricks, these are equal to the basis functions N_ = i5" W_ (p = x
or y) defined in appendix A with the local z variable set to zero. With these

basis functions, the surface area S_,p is a rectangle and therefore standard



numerical integration routines canbe usedexceptwhen e_ "-- e. In that case,

Go(r, r') is singular and the integrals must then be evaluated with care.

In accordance with the above, when the eth and the dth elements are not

the same or adjacent, then midpoint integration can be used to find

(_Tele e e I { _2 e , oe I/ I"" _i (Xc,,_ Xc,-ij -2S_vS_pGo(rc, r'_) k0Sj( yc)" Y:) (25)

e t t

+ 2S_,pSfpVs. [S;(xc, y_)× _.] Vs" [Si (x_,y:) × _] G0(r_,r'_)}

where q_ and "_*' = xck + ycy_._p b_v are the areas of the associated elements, rc
is the midpoint of the eth surface element and likewise r'c is the midpoint of

the e'th surface element. When the eth and e_th elements are adjacent or

coincident, the rectangular surface areas can be subdivided into 3 × 3 small

rectangles. On replacing the expansions functions with their midpoint value

at each of the nine sub-elements we get

3 3
2 e

Gi_ _ ._ 2 _ _ gmnvq{-koSj(rm,_) " S_(rpq)
m,n=l p,q=l

+ Vs" [S;(rm_) × k]Vs" [S, (rpq) × _]} (26)

where rm_ and rpq denote the midpoints of each sub-element, and

The kernel of gmnvq is singular when r = r', in which case it is appropriate

to rewrite it as

gL+ ds' ds
_,, _,; 4nlr - r'l

The first of these integrals is now well behaved and can be evaluated nu-

merically using a 2 × 2 Gaussian integration. The second integral, although

singular, can be evaluated analytically as described in [17].

In the case of tetrahedral elements, the surface basis S_(r) become the

same as those given by Rao, etc. [18] when defined for a pair of triangles

which share an edge. The evaluation of the matrix elements Gieje' for this

case is more involved and is best accomplished using area coordinates as

done in [19, 20].
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3 Computational and Modeling

Considerations

3.1 Mesh generation

A first step in any numerical analysis is the generation of an appropriate dis-

crete model of the structure. For our case, this amounts to subdividing the

cavity into bricks or tetrahedrals, a procedure referred to as mesh generation.

For rectangular cavities and patches, the mesh generation using rectangular

bricks is fairly simple. An approach which was employed is to subdivide the

cavity volume into layers of thickness Az. Each layer is then readily sub-

divided into Nse x .brae rectangular bricks. If the cavity housing the antenna

structure is nonrectangular, rectangular bricks can still be used, but in that

case staircasing will be unavoidable. The discretization of the cavity us-

ing tetrahedrals requires a more sophisticated mesh generation scheme and

several commercial packages are available for this purpose. We have used

a package marketed by SDRC IDEAS which can be run on many different

workstation platforms.

Regardless of which mesh generation scheme is employed, the final result

is a file often called the Universal file. As a minimum, this file contains the

following Tables:

1. A list of the global volume element Nos. and their material code.

2. A list of the nodes forming each v,,lume element.

3. A list of the (x, y, z) coordinates for each node.

4. A list of global edge Nos. and a list of the pairs of global node Nos.

forming an edge.

The last table is not usually contained in the Universal file but can be

readily constructed from the first three tables. To the above lists we must

also add information pertaining to the antenna geometry, feeding lines, resis-

tive cards, lumped loads and about the presence of a coax cable or a probe

feed. This information is generated by a preprocessor based on information

provided by the user. For example, in specifying the location of a rectangu-

lar patch or stripline, the user may enter the z location of the patch along

11



with the (x, y) coordinates for two opposite corners. For non-planar metallic

surfaces, it is necessary to flag or group the appropriate surface elements

bordering the metallic surface. This must, of course, =be done When gener-

ating the mesh. A similar procedure is required for identifying the presence

of resistive cards. The resistivity must be specified for each resistive surface

element or patch .... =_ =-:_

The specification of lumped loads or conducting posts is relatively simple.

These are assumed to be placed at the edges of the volume elements and

consequently the mesh must be generated with this in mind. Once the mesh is

completed, the user specifies the location or edge number and the impedance

value of each load or post. If the post is perfectly conducting, i.e. a short, it

is flagged as such and during matrix assembly, the field coefficient associated

with the edge occupied by the short is set to zero. The center conductor of

the coaxial cable is defined in this manner.

Based on the antenna and cavity structural and loading specifications,

the following Tables are generated:

5. List of edge Nos. on a perfectly conducting surface (cavity wall, patch,

stripline, wires, metallic posts, etc.).

6. List of volume elements along with their global edge Nos. which border

the aperture and do not coincide with a patch or other metallic surface.

7. List of volume elements and global edge Nos. bordering a resistive sur-

face along with the associated resistivity.

8. List of global edge Nos. along with subglobal edge Nos. for combina-

tions.

The preprocessor (see flow chart in fig. 4) which can be run interactively,

with or without a graphical user interface, depending on which mesh gener-

ation package is employed. The matrix elements are computed directly from

the data provided by these tables using the algorithms outlined in the pre-

vious section. The excitation vectors (to the right of (17)) are readily filled

once the user specifies the location and type of source for antenna parameter

calculations. For scattering calculations {If_'} and {P[} are set to zero with

{Q_} being the only excitation vector.

12



3.2 Matrix Assembly and System Solution

Once all input tables are read, the goal is to assemble the matrix system

{E A} + [01 [_1 {E_}- {b A}

where [A] is a very sparse square symmetric matrix, [_] is an Nse × Nse

square full matrix, the column {E v} denotes the field values at the edges

not bordering Sap, and {E, A } axe the corresponding coefficients for the edges

on Sap. For scattering computations, the column {by } is set to zero and

{b A} is equal to {Q=} as defined in (13). All matrix coefficients in the

above system are numbered in accordance with the unique global or their

own subglobal numbering schemes. If the pth global edge lies on a metallic

surface or coincides with a metallic wire or post, E y or EvB is zero and is, thus,

not included in the unknown field column. Consequently the computation

of .4p,, is skipped. The non-zero matrix elements .4m,, are computed by

summing Ai_j, B_j, Ci_ , and Di_j. Note that with this notation, m and n refer

to global edge numbers, whereas i and j _tre local indices for the eth element.

Obviously, an edge may belong to more than one volume element and in that

case .4 is constructed by summing the element equations for that edge. It

is important to note that only the non-zero elements of the [.4] matrix are

stored, thus, ensuring the O(N) memory demand of the system.

The [G] matrix is the same as the [G,__'] matrix, once the local indices

of the last are transformed to global incides. Because this matrix is full,

it is important to employ uniform gridding to permit the computation of

the associated matrix-vector products via the FFT. That is, for rectangular

bricks, all elements of Sap must be chosen to be rectangular and equal. This

may place some minor restrictions on the separation of the patches but is

well worth it, because it leadsto substantlai computational savings. In the

case of tetrahedrals, we must choose all surface elements to be right triangles

of equal size. Again, this is not difficult to achieve with the mesh generator,

but may place some restrictions on the specific shape and separation of the
elements.

The [G] matrix is symmetric by its nature, and by employing uniform

discretization as noted above it is necessary to store only one of the rows of

each Toeplitz block comprising the matrix. Many solvers can be used for solv-

ing this system, including LU decomposition or iterative schemes. Because

13



of the sparsity of [.,41and tlaesPecialform of [_], iterat{ve solversare best
suited as they require O(N) storage _y.hen the f_st Fourier :_ransformjs used

for computing the product [_]{EA}. Specifically, we employed a biconjugate

gradient algorithm for symmetric systems. This algorithm is given in Ap-

pendix C and its storage requirement is t;.25Nv + 10.5Nse complex numbers.

We have observed rather impressive convergence rates using this algorithm

(with diagonal preconditioning) for systems having even more than I00,000

unknowns. For example, for 180,000 unknowns, convergence is achieved in 57

iterations. The CPU time per iteration on a HP9000/750 for this system was

40 sec. Another system of 25,000 unknowns required 66 iterations per angle

with an average CPU time of 2 sec per iteration. Generally, the sampling

rate was 12 to 1.5 elements per linear wavelength.

-2

4 Numerical Results

In this section we present radar cross section computations for different

cavity-backed antenna configurations. Once the fields in the cavity volume

are computed by solving (28), only the tangential aperture fields need be

retained for evaluating the antenna RCS (or radiated field). Specifically, the

scattered field is given by

e-jkor ft

HS(r) = -jkoYo 27rr JJs[[-,, (oo+_(b)'[E(r')x_']ejk°sin°(_'e°_¢+u'_in¢) ds' (29)

where (r, 0, ¢) denote the usual spherical coordinates of the observation point.

The RCS of the cavitybacked antenna is then given by

IH'(r) • 0]2

= Jim (30)

in which p and q are equal to either 0 or ¢.

Below we present a number of radar cross section patterns for different

cavity-backed antenna configurations. The first few computational examples

are intended for validation purposes, and the remaining expose the reader to

RCS reduction techniques. Input impedance computation examples are also

included.

14



Example 1: RCS of a single patch residing in a rectangular cavity

The geometry of this configuration is shown in Figure 5 along with the com-

puted backscatter o'00 RCS pattern. The patch is 1.448" x 1.038" and resides

on a dielectric substrate having thickness t = 0.057" and relative permittiv-

ity er _ 4.0. The substrate is housed in a 2.89" x 2.10" x 0.057" rectangular

cavity recessed in a ground plane. The excitation was a 0-polarized plane

wave at 9.2 GHz in the zz plane, and the analysis was done using rectangu-

lar bricks. As seen the computed Croopattern is in good agreement with the

measured data [11]. We note that for this example the cavity terminations

play a more important role because thc computation frequency is not near

the resonant frequency of the patch. The measured data were collected by

placing the cavity-backed antenna configuration on a 5 foot long low cross

section body [18].

Example 2: tlCS of a circular patch near resonance

The geometry of this patch configuration is shown in Figure 6 along with

the calculated _00 backscatter RCS as a function of frequency. The diameter

of the circular patch is 1.3 cm and resides on a substrate 0.0787 cm thick,

having cr _ 2.33. The excitation is=a plane wave incoming at (0i = 60 °,

_bi = 180°), and the computations were clone using tetrahedral elements with

the substrate terminated at a diameter of 1.6148 cm. However, because the

calculations are near the patch resonance (,,_ 8 GHz), the substrate termin-

ations do not contribute significantly to the RCS of the antenna. As seen,

our computations are in good agreement with the measured data [19] which

were collected with the patch placed in a cavity having a different periphery.

Example 3: RCS of a rectangular patch in a rectangular cavity

This configuration consists of a rectang,dar patch 0.5 cm x 0.5 cm resid-

ing on a substrate housed by a rectangular cavity 1 cm x 1 cm x 0.5 cm.

The substrate's relative permittivity is 2.33. In Figure 7, we show the aoo

backscatter RCS pattern of this configuration at 3 GHz as a function of

angle. The incident plane wave is in the :cz plane (principal plane) and the

computations were done using rectangular bricks and tetrahedral elements

for discretizing the cavity region. As seen, both discretization schemes give
identical results.
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Example 4: RCS of a loaded rectangular patch

A common method for reducing the RCS of a patch antenna is to apply

resistive loading. Figure 8 shows the relative RCS reduction which can be

achieved by placing four loads at the edges of the microstrip patch. It is seen

that as the load's value is reduced to zero, the RCS as well as the gain of the

antenna are also reduced. As is well known [5, 20], the dB RCS reduction at

resonance is twice that of the gain, and this is observed in Figure 8 when the

feed's presence is modeled with a matched load (the feed is at x = 2.5 cm,

y = 1.7 cm). However, the 2 to 1 dB reduction is not precisely observed

because the resonant frequency of the patch is a function of the load's value.

The calculation frequency of 1.97 GHz corresponds to the resonant frequency

with the loads set to 300 f_ each. Unfortunately, as shown in Figure 9, the

predicted RCS reduction is not maintained outside the operating band of the

antenna. Away from the resonant frequency, the resistive loads play a much

lesser role since the RCS is dominated by the antenna structure, including

the cavity terminations. In a later example, we describe a treatment which

is better suited for RCS reduction outside the first resonance.

I

E

=

E

Example 5: RCS of a RAM coated patch

Another approach for reducing the RCS of the patch is to coat it with radar

absorbing material (RAM) as shown in Figure 10. In parity with the study

performed in [5], this lossy coating is only over the extent of the patch, thus

minimizing radiation losses. It should also be noted that this specific config-

uration can only be analyzed using a volume formulation and illustrates the

adaptability of the finite element method. The relative reduction achieved

with the placement of a specific coating as a function of its thickness t is

illustrated in Figure 10. These calculations were performed at the reson-

ant frequency of the patch which varied from 1.944 GHz at t = 0 cm to

1.893 GHz at t = 0.3 cm. As a result, the typical relation between gain

and RCS reduction is observed with much more fidelity. Unfortunately, as

seen from Figure 11, the observed RCS reduction is again maintained only

near resonance. At higher frequencies the thickness of the coating causes the

overall RCS of the structure to be increased. This occurs primarily because

of its larger electrical thickness.
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Example 6: RCSof a patch with distributed resistiveloading

With the motivation of reducing the patch RCS at frequenciesoutside its
operational band without substantial c,_mpromisein gain, we consider the
placement of a narrow resistive ribbon (R-skirt) around the periphery of
the patch as illustrated in Figure 12. Becausethe ribbon's electrical width
increaseswith increasingfrequency,it is expectedto havea rather noticeable
effect on the RCS of the patch at higher frequencies. Thus, greater RCS

reduction can be attained at higher frequencies without compromising the

antenna's gain performance. If a certain level of RCS reduction is desired

at resonance, lumped loads can still be used in conjunction with the R-skirt

loading.

The _r00 RCS of the patch as a function of frequency depicted in Figure 12

is given in Figure 13 before and after loading with the R-skirt. The given

backscatter RCS data correspond to a plane wave excitation incident in the

xz plane and at an angle of 0 = 70 ° with respect to the z axis. However,

as shown in Figure 13, the RCS reduction is fairly uniform over all 0 angles.

As seen, the resistive skirt loading reduces the RCS in and out of the band

as opposed to the narrowband performance of the lumped loads. Not sur-

prisingly, the placement of the R-skirt is seen to slightly change the resonant

frequency of the patch from 1.9522 GHz down to 1.744 GHz. From the inset

in Figure 12, the RCS reduction at resonance is about 9 dB for all angles

of incidences and thus the correspondi,!g gain reduction is approximately
4.5 dB.

Example 7: RCS of a cavity-backed spiral

Cavity-backed spirals are popular broadband antennas whose RCS is cer-

tainly of concern because of the complex nature of the antenna. Figure 14

shows the top and cross-sectional view of such an antenna. The spiral is rect-

angular in shape for modeling convenience and is housed in a metallic cavity

2.8125 cm × 2.8125 cm with and without absorber at the base of the cav-

ity. From the given dimensions, the lower limit of the antenna's operational

frequency is approximately 3 GHz. We shall therefore consider the RCS of

the antenna at 4.5 GHz and our goal is to study the effect of the absorber

at the cavity base and that of a-resist-i-ve sheet placed uniformly over the

cavity aperture. The chosen absorber consists of three uniform layers and
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wasdesignedto be similar to a commercialabsorbergiving i8 dB reduction
at 4.5 CHz.

The principal plane _r00backscatterRCSof the spiral antennausing dif-
ferent treatments is shown in Figure 15 as a function of angle. The cor-
responding radiation patterns are given in Figure 16. As seenthe absorber
alone reducesthe RCSof the antenna by approximately 6 dB and this was
to beexpected(the gain reduction was3 dB). Clearly, the R card hasa more
dramatic effecton the RCSof the spiral antenna. SomeRCSreduction is still
observedevenwhen the resistivity of the sheetis 10Zoor 5Zo. However,the
gain of the antenna (not shown) drops _,ubstantiallymoreand in particular
nearly a 10dB gain reduction wasobservedwith R = 5Zo. For lower val-

ues of the resistivity the gain reduction is so substantial (as is also the case

with the RCS of the spiral) making such a treatment impractical. Perhaps

a better treatment (which reduces the RCS without substantial compromise

in gain) would be to apply a lossy dielectric coating over the spiral/cavity

aperture. This coating would be equivalent to a resistive sheet having a res-

istivity which is a function of frequency. By controlling the thickness and

loss tangent of the coating, a frequency response may be achieved which is

appropriate for a specific application.

m

Example 8: Input impedance of a rectangular patch

The specific antenna geometry is shown in Figure 17 consisting of a patch

3.4 cm x 5.0 cm residing at the aperture of a 7.5 cm x 5.1 cm cavity. The

substrate is of thickness t = 0.08779 and has a relative permittivity er = 2.17

with a loss tangent of 0.0015. Figure 17 shows the complex input impedance

as a function of frequency with the probe feed placed at (1.22 era, 0.85 era).

These calculations were done in the presence of a 50 f_ resistor (lumped load)

placed between the patch and substrate _t (-2.2 cm, -1.5 cm). Our calcula-

tions are seen to be in good agreement with the measured data [11] whereas

corresponding calculations using traditional methods are not as accurate. We

remark that the 50 f2 load (50 I2 resistor) serves to reduce the RCS of the

patch at resonance. However, it also reduces the antenna gain. It has been

observed though that at resonance the dB reduction in RCS is twice that

of the gain (i.e. if the gain is reduced by 5 dB, the RCS will be reduced by

approximately 10 dB). Unfortunately, as noted in a previous example the

resistors do not have any appreciable effect on the RCS when the patch is
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illuminated with a h'equencyout of its resonanth'equency.

Example 9: Input impedanceof a circular patch

The specific antenna configuration is a circular patch having a radius of
1.3cm and residingat the centerof asubstratefilled cavity of radius2.115cm.
The cavity depth is t = 0.406 cm (--_A/15) and the substrate's relative dielec-

tric constant is er _ 2.9. We computed the input impedance of this patch

placed on the surface of the cavity for a probe feed located 0.8 cm from the

center of the patch. The computed and measured impedance are depicted

in a Smith chart shown in Figure 18 by varying the frequency from 3 GHz

to 3.8 GHz. The agreement between our calculations and reference data is

indeed quite satisfactory.

5 Conclusion

In this report we reviewed a hybrid finite element-boundary integral method

for computing the RCS of planar antennas. The pertinent finite element and

boundary integral formulations were presented along with the method's at-

tributes. It was demonstrated that by virtue of the finite element method, the

formulation is adaptable and rather efficient in modeling differing geometries

and material compositions, including lumped and distributed loads.

General-purpose computed codes were written on the basis of the presen-

ted formulation. These were used to generate the presented RCS computa-

tions for circular and rectangular patch configurations, spiral antennas and

other non-rectangular configurations. Among the presented examples some

served for validating the method whereas others exposed the reader to RCS
reduction schemes.
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Appendix A:

Matrix elements for rectangular bricks

Referring to Figure A1, it is convenient to first introduce the definitions

{E_} ° ° °= _, %, Czj

{W_} = {2N:j._)N;_,Nz_} T (A1)

e e e ^ Te
wherej = 1,2,3,4. Thus, for example, E 2 = ¢x2, E_ =¢y3, W_ =xA_2 ,

W_- = _)A_3, etc. The field expansions can then be written as

El"

4 4 4

re e . re e , e e= E _(y,z)%, E_ = _ 5_j(z,_)%, E_ = _ N_j(_,y)%
j=l j=l j=l

(12)

where

W:_l _ (b-y')(c-z'). re _. Nxe3--. (b-Y1) zr . Nxe4 : _.y._..-- bc , .h, x2 "-= bc ' bc ' bc '

N_ (_-_')(_-_'1" N_ N_ N_ -- (A3)1= _ _. _ = (_-_')_'. _ _,_,.ca ' 2 _ ca ' 3 ca ' 4 _-" ca '

N:_ = (,-_')(b-_,) _,(b-y,). (_-_')y'. N e4=

In these, (x',y', z _) denote the local coordinates specifying a point within

the eth element and from an examination of the expansion functions we

observe that ¢_1 represents an average ,,f the field component E,: along the

edge segment (1,2). Likewise, ¢_2 is associated with the E, component

along the edge (3,4) and so on. The elements of the 12 x 12 [A _] matrix

defined in (10) can now be readily evaluated in a straightforward manner

since Npj (p = x, y, z) are simple linear functions. To do so, for notational

and programming convenience, we shall denote these elements as A(pj),(qk),

where p = x,y,z; q = x,y,z; j = 1,2,3,4; and k = 1,2,3,4. We next define
the matrices

abc
[_'o] -
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4221

2412

2142

1224
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[K,]

[K2]

[K3]

2 -2 1 -1

-2 2 -1 1

1 -1 2 -2

-1 1 -2 2

2 1 -2 -1

1 2 -1 -2

-2 -1 2 1

-1 -2 1 2

2 1 -2 -1

-2 -1 2 1

1 2 -1 -2

-1 -2 1 2

, ,=

where a, b and c are the side lengths of the brick as defined in Figure A1.

On using this notation we have

[A] = [

[A_:j,_k] --

[A_._] =

[d_j,_] =

[A_j,_k] -

[Azj,_k]=

[mz._] -

[A::j,.k] [A.j,uk] [A.j,zk]]
[Azj,:_k] [A_j,uk] [A_j,zk]

ab

l { _b [lil] + _c[l'(2] - k_c,'#,'[Iio] }
ti,.

-----c [K3], [A.j.k] = b [K3I T

C - T a

6,u,.[h31 , [Ay./,zk] = -6/---[[K31

i {_[K2I+ _c[K,l-k2o_,l_[Ko]}

b a [K3]r
- 6-----[[I(31, [Az./,uk] = - 6/_----[

_ {_[K,] + _-Ca[K2l-ko2C_[Kol}

If a resistive sheet of resistivity R borders a face of the eth brick, then B_j

will be non-zero. Denoting the field components at the edges of the subject

rectangular face by E_, E_2, E_I, and E_2, it follows from (14) that

j ko Zo did_
Bi_,il = Bi2,i2e = Bj,,.i 1_= B_2'i2_ - 3R

4O

=



j ko Zo

B,_,,_: B3,,1= BS,j_= B;_,j,- 6R d,d_

where di and dj are the corresponding side lengths of the rectangle and R

is the (unnormalized) resistivity of the sheet. All other elements of the [B]
matrix are zero.
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Appendix B:

Evaluation of matrix elements for tetrahedrals

Referring to fig. B1 and the associated table, the fields in the eth tetrahedron

are expanded as
6

E = _ E_W_
i=1

where the basis functions W_ are given by

e ( fT_i+gT_ixr rEV_Wv-i(r) = 0 outside element
k

bT-i

fT-i - 61,4 ri_ × ri_ ri_, ri_ : position vectors of vertices
il and i2 (see Table)

ril] = length of the ith edge (see Table)

bib7-i

g7-i -- 6_ ei

ei
bi

bi = ]ri_-

I_ = element's volume

We note that

V. W_ = 0 V x W_ = 2g,

indicating that W_ are divergenceless. Furthermore,

We(rJ) " ej = _ij; 1 i=j6_J= 0 iCj

where r i has its tip on the jth edge of the tetrahedron. This last property

ensures that the coefficients E[ = E - ei represent the average field value at

the ith edge of the tetrahedron.

Using the above basis functions, we now proceed with the derivation of

the matrix elements Ai_. We have

ffft 4
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where

and

W 7 • W] dv

= _r(I1 + h + h)

D=(fi xgj)+(fj xgi)

I1 = ///V_ fi " fj "tV

I2 = fffv r . D dv

h = fff,(g,×r) x r) dv

Since f is a constant vector, I1 reduces to

To evaluate 12 we first set

11= fi" fjr,

4

x = Z Lixi
i=1

4

y = Z LiYi
i=1

4

z = Z Lizi
i=1

x r). (gj x r)} dv

where xi, yi, zi (i = 1,...,4) denote the (x,y,z) coordinates of the tetrahed-

ron's vertices and Li are the simplex coordinates or shape functions for the

same element. That is, Li is the normalized area of the tetrahedron formed

by its three corners other than the ith, and the point (x, y, z) located within

the tetrahedron. Using the standard formula for volume integration within

a tetrahedral element and simplifying, we have

12= 7 D_ xi + D_, __.y_ + D, __.,zl
i=1 i=1 i=1
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where Dm is the rnth component of D. The evaluation of/3 can be simplified

by the use of basic vector identities. We have,

/a = gi" gj iv, Ir12 dv (gi" r)(gj- r) dv

= (giugju + gizgjz) Iv, x_ dv

+ (glzgj_: + gizgjz) fv_ 92 dv

÷ (gixgjx nt- giygjy)/V_ z2 dv

- (gi_gjy + gj,:gi_) Ire xy dv

- (gi_g._z + gj,:giz)/ve zx dv

- (gi_gi-. + gj_g,-)/v_ yz dv

where gim represents the rnth component of the vector gi- Each of the above

integrals can be easily evaluated analytically and the result can be expressed

in the general form

i=1 i=l i=l

for l, rn = 1,... ,3. The parameters at or am can represent any of the recti-

linear variables x, y, z.
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Appendix C:

Biconjugate gradient algorithm for solving the

symmetric system Ax- b

Initialize the residual and search vectors with an initial guess x0:

po = ro = b- Axo

Iterate for k = 0, 1,2,... :

C_k

_k+l

rk+l

&

Pk+l

rk, rk)

(Pk, Apk)

_-- _7_k + O_kPk

= rk - _kApk

(rk+a,rk+l)

(rk, rk)
-" rk+l q- flkPk

Terminate when

err- Ilrk+_ll< tolerance.
Ilbll

• In the algorithm, (x, y) = xTy, where T denotes the transpose of the column.
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Figure A1. Local geometry Of the rectangular brick.
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Figure B1. Edge and vertex numbering for the tetrahedron.


